Low PMEPR OFDM Radar Waveform Design Using the Iterative Least Squares Algorithm
نویسندگان
چکیده
منابع مشابه
Waveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملIterative Reweighted Least Squares ∗
Describes a powerful optimization algorithm which iteratively solves a weighted least squares approximation problem in order to solve an L_p approximation problem. 1 Approximation Methods of approximating one function by another or of approximating measured data by the output of a mathematical or computer model are extraordinarily useful and ubiquitous. In this note, we present a very powerful ...
متن کاملLeast-Squares-Based Iterative Identification Algorithm for Wiener Nonlinear Systems
This paper focuses on the identification problem ofWiener nonlinear systems.The application of the key-term separation principle provides a simplified form of the estimated parameter model. To solve the identification problem of Wiener nonlinear systems with the unmeasurable variables in the information vector, the least-squares-based iterative algorithm is presented by replacing the unmeasurab...
متن کاملA two-step Recommendation Algorithm via Iterative Local Least Squares
Recommender systems can change our life a lot and help us select suitable and favorite items much more conveniently and easily. As a consequence, various kinds of algorithms have been proposed in last few years to improve the performance. However, all of them face one critical problem: data sparsity. In this paper, we proposed a two-step recommendation algorithm via iterative local least square...
متن کاملLSMR: An iterative algorithm for sparse least-squares problems
An iterative method LSMR is presented for solving linear systems Ax = b and leastsquares problems min ‖Ax−b‖2, with A being sparse or a fast linear operator. LSMR is based on the Golub-Kahan bidiagonalization process. It is analytically equivalent to the MINRES method applied to the normal equation ATAx = ATb, so that the quantities ‖Ark‖ are monotonically decreasing (where rk = b−Axk is the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2015
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2015.2449305